Silicon-on-insulator microcavity light emitting diodes with two Si/SiO2 Bragg reflectors
نویسندگان
چکیده
Light emitting pn-diodes were fabricated on a 5.8 mm thick n-type Si device layer of a silicon-on-insulator (SOI) wafer using standard silicon technology and boron implantation. The thickness of the Si device layer was reduced to 1.3 mm, corresponding to a 4l-cavity for l 1⁄4 1150 nm light. Electroluminescence spectra of these low Q-factor microcavities are presented. Addition of Si/SiO2 Bragg reflectors on the top and bottom of the device (3.5 and 5.5 pairs, respectively) is predicted to lead to spectral emission enhancement by 270. r 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Low-Power-Consumption Short-Length and High-Modulation-Depth Silicon Electrooptic Modulator
In this paper, we propose and analyze a novel compact electrooptic modulator on a silicon-on-insulator (SOI) rib waveguide. The device confines both optical field and charge carriers in a micron-size region. The optical field is confined by using a planar Fabry–Pérot microcavity with deep Si/SiO2 Bragg reflectors. Carriers are laterally confined in the cavity region by employing deep-etched tre...
متن کاملLight-Output Enhancement of GaN-Based Light-Emitting Diodes with Three-Dimensional Backside Reflectors Patterned by Microscale Cone Array
Three-dimensional (3D) backside reflector, compared with flat reflectors, can improve the probability of finding the escape cone for reflecting lights and thus enhance the light-extraction efficiency (LEE) for GaN-based light-emitting diode (LED) chips. A triangle-lattice of microscale SiO2 cone array followed by a 16-pair Ti3O5/SiO2 distributed Bragg reflector (16-DBR) was proposed to be attac...
متن کاملPorous - silicon microcavities ( * )
The properties and preliminar applications of porous-silicon (p-Si) microcavities are here reported. These structures are based on a planar resonator formed by two narrow-band high-reflectance distributed Bragg reflectors separated by a thin active optical layer, all of which are made of' p-Si layers. The accurate control of the electrochemical dissolution of Si lets us realize p-Si multilayers...
متن کاملEnhanced emission from Si-based light-emitting diodes using surface plasmons
Excitation of surface plasmons on metallic nanoparticles has potential for increasing the absorption and emission from thin Si devices. We report an eight-fold enhancement in electroluminescence from silicon-on-insulator light-emitting diodes at 900 nm via excitation of surface plasmon resonance in silver nanoparticles, along with a redshift in the electroluminescence by 70 nm by overcoating th...
متن کاملSilicon Substrates With Buried Distributed Bragg Reflectors for Resonant Cavity-Enhanced Optoelectronics
We report on a commercially reproducible silicon wafer with a high-reflectance buried distributed Bragg reflector (DBR). The substrate consists of a two-period DBR fabricated using a double silicon-on-insulator (SOI) process. The buried DBR provides a 90% reflecting surface. We have fabricated resonant cavity-enhanced Si photodetectors with 40% quantum efficiency at 860 nm and a full-width at h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006